Synthesis of espicufolin based on 6-endo ring closure of o-alkynoylnaphthols \dagger

Hidemitsu Uno, ${ }^{* a}$ Katsuji Sakamoto, ${ }^{a}$ Erina Honda, ${ }^{a}$ Kaori Fukuhara, ${ }^{a}$ Noboru Ono, ${ }^{b}$
Junya Tanaka ${ }^{c}$ and Masahiro Sakanaka ${ }^{c}$
a Advanced Instrumentation Center for Chemical Analysis, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
${ }^{b}$ Department of Chemistry, Faculty of Science, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
${ }^{c}$ Department of Physiology and Anatomy, Ehime University School of Medicine, Shigenobu, Ehime 791-0295, Japan. E-mail: uno@dpc.ehime-u.ac.jp; Fax: +81-89-927-9670

Received (in Cambridge, UK) 27th September 2000, Accepted 27th November 2000
First published as an Advance Article on the web 10th January 2001

Regioselective halogenation of 3-acetoxymethyl-7-chloro-5,8-dimethoxy-1-naphthol $\mathbf{5}$ was achieved by DBH or I_{2} / N-methylmorpholine to give the corresponding 2-halogeno-1-naphthols $\mathbf{8}$ and 11, which were converted to 1-methoxymethoxy-3-(alk-2-ynoyloxymethyl)-2-halogenonaphthalenes $\mathbf{1 7}$ and $\mathbf{1 8}$ in good yields. An intramolecular acyl-transfer reaction of the 2-halogenonaphthalenes triggered by halogen-lithium exchange with BuLi at $-78{ }^{\circ} \mathrm{C}$ gave 1-methoxymethoxy-2-alkynoyl-3-(hydroxymethyl)naphthalenes 21 in high yields. After protection of the hydroxymethyl group as a benzoate, formation of a γ-pyrone ring was easily achieved by deprotection of the methoxymethyl group followed by spontaneous 6 -endo ring closure under mildly acidic conditions. The pyrone derivative having a 1-methylpropyl group was successfully converted to espicufolin 1.

Introduction

Neuronal cell-protecting substances in the event of ischemia have attracted increasing attention from scientists in many fields. Many kinds of such compounds have been reported. ${ }^{1}$ In the event of ischemia, L-glutamic acid existing as an excitatory neurotransmitter in the brain is believed to play the important role of increasing the level of oxidants such as superoxide anion and oxygen radicals in the neuronal cells, which then cause neuronal cell death. ${ }^{2}$ In 1996, Seto et al. found a novel neuronal cell-protecting substance, espicufolin 1, in the culture broth of Streptomyces sp. cu39 in the course of their screening for suppressors of glutamate toxicity using neuronal hybridoma N18-RE-105 cells. ${ }^{3}$ However, the mechanism of action of espicufolin was suggested not to relate to antioxidative activity following an investigation of buthionine sulfoximine toxicity. ${ }^{3}$ During the course of our project exploring efficient neuronal-cell-protecting substances, we were interested in the mechanism of action and in vivo activity of espicufolin $\mathbf{1}$.

Espicufolin 1 has a 1,8-dihydroxyanthraquinone skeleton fused with a γ-pyrone ring and one unknown stereogenic center at the 14 -position, and is considered as a new member of the pyranoanthraquinone family. Some of these family members were reported to show important properties such as antitumor and antibiotic activities. ${ }^{4}$ These pyranoanthraquinone families are thought to be biosynthesized from a nonaketide having an appropriate starting unit (Scheme 1). ${ }^{5}$ In the biosynthesis of espicufolin and premithramycinone, ${ }^{6}$ 2-methylbutanoyl and acetyl groups are used as the starting unit, and the ending acetyl group is modified to hydroxymethyl and methoxycarbonyl groups, respectively. We have planned to synthesize espicufolin 1 via the route in which the two parts can be easily modified for syntheses of other family members in addition to espicufolin

[^0]

Espicufolin (1), Kidamycinone Families, Indomycinones, Premithramycinone, etc.
Nonaketide precursor
Scheme 1 Biosynthesis of pyranoanthraquinone families.
analogues. We have devised a novel approach to naphtho-[1,2-b]pyrantriones based on an intramolecular alkynoyl transfer followed by 6 -endo closure under acidic conditions, ${ }^{7}$ and succeeded in preparing (S)-espicufolin. ${ }^{8}$ In this paper, we describe the detailed study for the preparation of espicufolin. The in vitro study of espicufolin using rat neuronal cells of 17 -day embryos is also described.

Results and discussion

Retro-synthesis

Our retrosynthetic pathway is shown in Scheme 2. Since the regioselective Diels-Alder reaction of chloronaphthoquinone with 1-methoxycyclohexa-1,3-diene has been established as one of the most reliable methods for construction of anthraquinones bearing hydroxy groups, ${ }^{9}$ we focused our attention on the preparation of pyranonaphthoquinone 2. This pyranonaphthoquinone 2 could be prepared by the intramolecular cyclization of o-alkynoylnaphthalene $\mathbf{3}$; a similar and successful method using such a reaction was reported for the preparation of the kapurimycin A_{3} analogue. ${ }^{10}$ The o-alkynoylnaphthalene 3 would be prepared from the known naphthol 4. ${ }^{11}$

Scheme 2 Retro-synthesis of espicufolin.

Halogenation of naphthols

As attempts to introduce an acetyl group at the 2-position of 4 by the Friedel-Crafts reaction and the Fries rearrangement both failed, we thought to introduce the acyl groups by the reaction of a lithio derivative from 4 with acylating reagents. Since the starting 4 has a chlorine atom, the directed ortholithiation method ${ }^{12}$ of alkyllithiums utilizing the neighbouring hydroxy group as a methoxymethoxy group cannnot be applied. We decided to generate the lithio compound by the halogen-lithium exchange reaction. Thus, we examined the regioselective halogenation of the naphthols 4 and 5, the latter of which can be quantitatively obtained by selective acetylation with $\mathrm{Ac}_{2} \mathrm{O}$ in the presence of a catalytic amount of HClO_{4} (Scheme 3).

Treatment of the naphthol 4 with 1.2 equiv. of N-bromosucciniodide (NBS) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave a regioisomeric mixture of 2-bromonaphthol 6 and 4-bromonaphthol 7 in respective yields of 24% and 14% (run 1). The regiochemistry of 6 and 7 was unambiguously determined by differential nuclear Overhauser effect (NOE) experiments. Regioselective bromination giving the 2-bromonaphthols $6(92 \%)$ and 8 (98%) was achieved using NBS in dimethylformamide (DMF). ${ }^{13}$ This preference for the 2-bromo derivatives over 4-bromo derivatives was quite different from the result obtained in the bromination of 1-hydroxy-9,10-anthraquinones, where the bromination preferentially occurred at the 4 -position. ${ }^{14}$ This difference could be due to the steric effect of the peripheral methoxy substituent in the naphthols 4 and 5 . When 1.0 or 1.2 equiv. (0.5 or 0.6 mol per the naphthol) of 1,3-dibromo-5,5-dimethylhydantoin (DBH) was used as the brominating reagent, ${ }^{15}$ the target bromide $\mathbf{6}$ was obtained in good yields ($88-90 \%$) irrespective of the solvent (DMF or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). This high regioselectivity of DBH would be attributed to the bulkiness of DBH compared to NBS. The advantage of using DBH should be emphasized because both the bromine atoms were available for this bromination. Reaction of 5 with I_{2} and N -methylmorpholine (NMM) gave mainly dimeric compounds such as 12 in 66% yield in addition to 2-iodonaphthol $11(31 \%) .{ }^{16}$ No formation of a 4-iodo derivative was observed. One of the dimers was isolated in 36% yield by recrystallization and the structure was determined as the $2,2^{\prime}$ dimer 12 by ${ }^{1} \mathrm{H}$ NMR analysis. Structures of other dimeric compounds in the mother liquor were assumed to be $2,4^{\prime}$ - and $4,4^{\prime}$-dimers and their partially iodinated compounds by ${ }^{1} \mathrm{H}$ NMR analysis, though the precise assignment could not be done. In order to suppress the formation of dimers, the reaction was carried out at a lower concentration. When the reaction was conducted at a 0.05 M concentration, yield of the iodide $\mathbf{1 1}$

Scheme 3 Reagents and conditions: i) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{HClO}_{4}$, rt; ii) NBS or DBH; iii) I_{2}, NMM, rt.
was remarkably improved to 77%. Slight electronic and steric changes from 5 to $\mathbf{4}$ hampered the iodination. The iodination of 4 under similar conditions resulted in considerable formation of dimers such as 10 (32\%) in addition to 9 (43\%). 2, 2'-Dimer 10 was isolated in 24% yield by recrystallization of the dimeric mixture.

Intramolecular acyl-transfer reaction

As debromination and deacetylation of $\mathbf{8}$ to $\mathbf{4}$ were observed upon treatment of $\mathbf{8}$ with $n-\mathrm{BuLi}$, the 2 -bromo- and 2 iodonaphthols 8 and 11 were first converted into methoxymethyl ethers 13 and $\mathbf{1 4}$, in 96% and 89% yield, respectively (Scheme 4). The acetyl group of $\mathbf{1 3}$ and $\mathbf{1 4}$ was then hydrolyzed to give alcohols $\mathbf{1 5}$ and 16 in respective yields of 92% and 93%. Then, intermolecular acylation of the alcohol 15 at the 2-position was attempted. When the alcohol 15 was treated with 2 equiv. of n - BuLi at $-78^{\circ} \mathrm{C}$ followed by methyl 4-methylpent-2-ynoate, none of the acylated compound was formed and the simply debrominated compound $\mathbf{2 0}$ was obtained in quantitative yield. This fact may indicate that the bromine-lithium exchange is followed by rapid quenching of the carbanion by the intramolecular hydroxy group or that the carbanion at the 2-position is severely hindered by the adjacent substituents. Therefore, we decided to utilize the 3-hydroxymethyl group as an acyl group carrier. The 3-hydroxymethyl group of $\mathbf{1 5}$ and $\mathbf{1 6}$ was acylated with a variety of alkynoic acids ${ }^{17}$ to give alkynoyl esters $\mathbf{1 7 a}$ and $18 \mathbf{a}-18 \mathrm{e}$ in good yields ($60-94 \%$). ${ }^{18}$

An intramolecular acyl-transfer reaction was examined by generation of an anion at the 2-position of the naphthalenes under various conditions. First, a halogen-lithium exchange reaction of $\mathbf{1 3}$ and $\mathbf{1 4}$ was carried out [reaction (1)]. The reaction of 13 with an equal equivalent of $n-\mathrm{BuLi}$ at $-78^{\circ} \mathrm{C}$ gave almost the same amount of the aimed for product $19(33 \%)$ and a simply deacylated alcohol $15(28 \%)$. From the NMR analysis, the 2-acetyl compound 19 was proved to exist as a ca. 1:7

$13 \mathrm{X}=\mathrm{Br}$
$14 \mathrm{X}=\mathrm{l}$

17a $\mathrm{X}=\mathrm{Br} ; \mathrm{R}=i-\mathrm{Pr}$
18a $X=I ; R=i-P r$
(S)-18b $X=1 ; R=(S)-s-B u$

18c $X=1 ; R=M e$
8d $X=1 ; R=P h$
18e $X=I ; R=\mathrm{C}_{6} \mathrm{H}_{4}-p$-OMe
Scheme 4 Reagents and conditions: i) $\mathrm{MOMCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; ii) NaOH , THF-MeOH, rt; iii) alk-2-ynoic acid, $\mathrm{BOPCl}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt.

mixture of keto and hemiacetal forms in CDCl_{3} at ambient temperature. When 2.1 equivalents of tert-BuLi were employed instead of n - BuLi , the yield of 2-acetyl compound 19 was greatly improved to 75%, and compound $\mathbf{2 0}$ was formed as a by-product in 8% yield. In the reaction of the iodo derivative 14 with n - BuLi at $-78^{\circ} \mathrm{C}$, the aimed for product 19 was formed as a sole product in 88% yield.

Next, the alkynoyl-transfer reaction was examined [reaction (2)]. The reaction of $\mathbf{1 7 a}$ with tert-BuLi at $-78^{\circ} \mathrm{C}$ was hampered by the nucleophilic attack to give a considerable amount of $\mathbf{2 0}(52 \%)$ as well as 21a (40%), probably due to the sterically less hindered nature of the alkynoyl ester moiety. The side reaction giving 20 could not be suppressed by reduction of the reaction temperature to $-100^{\circ} \mathrm{C}$, and a mixture of $\mathbf{2 0}(41 \%)$ and 21a (59%) was obtained. On the other hand, highly reactive iodo compound 18a underwent smooth alkynoyl-transfer reaction even on treatment with n - BuLi at $-78^{\circ} \mathrm{C}$ to give the desired compound 21a in 80% yield as well as a small amount of $20(5 \%)$. Transformation of other alkynoyloxy derivatives $(S)-\mathbf{1 8 b},(R)-\mathbf{1 8 b}, \mathbf{1 8 c}, \mathbf{1 8 d}$ and 18e was also achieved in respective yields of $95,95,65,73$ and 95%. In the case of 3 -(but2 -ynoyloxymethyl)naphthalene 18 c with n - BuLi , the yield of 21c was slightly low (65%). From NMR and IR analyses of the by-products, buta-2,3-dienoyloxy and oxepin derivatives 22 and $\mathbf{2 3}$ were formed in respective yields of 3 and 4%. The buta-

2,3-dienoyloxy compound $\mathbf{2 2}$ would be generated by proton abstraction from the acidic butynoyl moiety followed by protonation to the α-position upon quenching. As an allenic sp carbon is more susceptible toward nucleophilic attack than is an acetylenic sp carbon, mainly due to stability of the resulting intermediates (allylic $v s$. vinylic), the oxepin formation giving 23 would proceed via the acetylene-allene tautomerization of 21c followed by an intramolecular ring closure.

Intramolecular cyclization of \boldsymbol{o}-alkynoylnaphthols

At first, we attempted to remove the methoxymethyl group of 2-alkynoylnaphthalenes $\mathbf{2 1}$ under acidic conditions prior to the intramolecular cyclization. Treatment of the 2-alkynoyl compound 21a with HCl in aq. tetrahydrofuran (THF)- $\mathrm{Pr}^{\mathrm{i} O H}$, however, gave undesired oxepine derivative 24 as the main product in 62% yield. Formation of $\mathbf{2 4}$ was the formal 7 -endodigonal ring closure which was reported as a favourable process. ${ }^{19}$ Thus, the 3-hydroxymethyl group of 21a-21e was protected as the benzoate esters 25a-25e (Scheme 5).
The compound 25a was refluxed in a THF-PriOH-HCl (3 M) solution under argon to give the target pyrone 26a in 85%

Scheme 5 Reagents and conditions: i) 21a, HCl , aq. $\mathrm{THF}-\mathrm{Pr}^{\mathrm{i} O H}$, reflux; ii) BzCl , pyridine, rt; iii) 25a-25e, HCl , aq. $\mathrm{THF}-\operatorname{Pr}^{\mathrm{i}} \mathrm{OH}$, reflux.
yield. When the reaction was carried out under air, however, an intractable mixture was obtained. In this mixture, considerable amounts of dimeric compounds were identified by ${ }^{1} \mathrm{H}$ NMR and MS analyses, though the structures could not be assigned. In the cases of aliphatic alkynoyl derivatives $(S)-\mathbf{2 5 b},(R)-\mathbf{2 5 b}$ and $\mathbf{2 5 c}$ c, yields of the pyrones $(S)-\mathbf{2 6 b},(R)-\mathbf{2 6 b}$ and $\mathbf{2 6 c}$ were good (77,77 and 65%, respectively). On the other hand, a similar reaction of aralkynoyl compound 25d gave a mixture of pyrone 26d (41%) and furanone $\mathbf{2 7 d}$ (41%). A similar result was obtained in the reaction of 25e; a mixture of 26e (48\%) and 27e (46%) was formed. In order to suppress the undesired 5 -membered-ring formation, we examined the cyclization of enaminones derived from addition of diethylamine to the triple bond. ${ }^{20}$ The aralkynoyl compounds $\mathbf{2 5 d}$ and $\mathbf{2 5 e}$ were treated with diethylamine and then the crude enaminones were refluxed under acidic conditions to afford only pyrones 26d and 26e in excellent yields (87 and 92%, respectively).

Mechanistic considerations of the cyclization

Possible reaction pathways to the observed products are illustrated in Scheme $6 .{ }^{7}$ Since the oxidative dimerization was

Scheme 6 Proposed reaction pathways.
observed in the presence of oxygen and the furanone formation was observed only in the reactions of the aralkynoyl derivatives 25d and 25e, we have suspected the participation of a radical intermediate such as \mathbf{C} which then leads to the undesired furanones 27 in the 5-exo-digonal fashion. ${ }^{21}$ It is very difficult to confirm the participation of the naphthoxyl radical intermediate, because naphthoxyl radicals are far more stable than phenoxyl radicals and are readily formed under various conditions. ${ }^{22}$ Indeed, even in the presence of tocopherol as a radical scavenger or azoisobutyronitrile (AIBN) as a radical promoter, the ratio of $\mathbf{2 6 : 2 7}$ was unchanged. In spite of all of our efforts, participation of the radical intermediate could not be confirmed. Although formation of the furanones 27 is not clear at this moment, the main reaction pathways leading to 26 are as follows. Under acidic conditions, protonation of the ynone carbonyl would occur to give an allenyl cationic intermediate \mathbf{A}. The intermediate would be attacked at the β-position either by an intramolecular hydroxy group (6-endodigonal mode; route $\boldsymbol{a})^{23}$ or by water or $\mathrm{Pr}^{\mathrm{i}} \mathrm{OH}$ (route \boldsymbol{b}, via B) followed by 6 -exo-trigonal or 6 -endo-trigonal ring closure ${ }^{21}$ to give 26.

Preparation of espicufolin

The obtained naphtho[1,2-b]pyran-4-one 26b was transformed into espicufolin 1. First, deprotection of the benzoyl group was tested by using 26a as a substrate [reaction (3)]. When 26a was

treated with NaOH in aq. THF-MeOH at room temperature for $\mathbf{1} \mathrm{h}$, the target compound $\mathbf{2 8}$ and γ-lactone 29 were obtained in 33 and 37% yield, respectively. The by-product 29 would be derived from the hydrolysis of the γ-pyrone ring of $\mathbf{2 8}$ to a β-diketo derivative, which would decompose by the intramolecular nucleophilic attack of the adjacent hydroxymethyl group. In fact, shortening the reaction time increased the yield of 28 to 70% and lowering the reaction temperature to $0^{\circ} \mathrm{C}$ brought about almost quantitative formation of $\mathbf{2 8}$. As oxidation of $\mathbf{2 8}$ with cerium(Iv) ammonium nitrate (CAN), however, gave a complex mixture probably due to the highly electron-rich nature of the substrate, we decided to deprotect the benzoyl group at the final step.

Conversion of the γ-pyrone-fused naphthalene derivative (S)-26b to the target γ-pyrone-fused anthraquinone was achieved by the reported protocol. ${ }^{11}$ Oxidation of (S)-26b with CAN gave naphthoquinone (S)-30 in 75% yield (Scheme 7). One-pot conversion ${ }^{11}$ of naphthoquinone 30 to the anthraquinone resulted in intractable mixture formation, from which the target anthraquinone 32 was obtained in an only trace amount. As hydrogen chloride developed during the aromatization would destroy the γ-pyrone moiety at the elevated temperature employed, we employed the two-step method. The Diels-Alder reaction of (S) $\mathbf{3 0}$ with 1-methoxycyclohexa-1,3-diene followed by elimination of hydrogen chloride with pyridine gave $(S)-\mathbf{3 1}$ as a mixture of diastereomers ($\approx 1: 1$) in 69% yield. The target anthraquinone (S)-32 was obtained in 74% yield by heating neat $(S)-\mathbf{3 1}$ at $150^{\circ} \mathrm{C}$. Cleavage of the methyl ether (to afford 33) followed by saponification of the benzoyl group at $0^{\circ} \mathrm{C}$ provided (S)-espicufolin $[(S)-\mathbf{1}]$ in 50% yield. Similarly, (R)-espicufolin $[(R)-1]$ was also prepared. The analytical data of the synthesized (R)-espicufolin were identical with the reported data for natural espicufolin in all respects including the $[a]_{\mathrm{D}}$-value $\left[(R)-\mathbf{1}:+8.5\left(\mathrm{CHCl}_{3}\right.\right.$, c 0.02$) ;(S) \mathbf{- 1}$: $-11.3\left(\mathrm{CHCl}_{3}, c 0.02\right)$; natural espicufolin: $+9.4\left(\mathrm{CHCl}_{3}, c\right.$ $0.02)$]. Therefore, the unknown chiral center of $\mathrm{C}-14$ of natural espicufolin was determined to be R.

in vitro Examination of espicufolin

To examine if espicufolin can promote neuronal survival, an in vitro study was conducted with the use of rat cerebrocortical neurons. Rat cerebrocortical neurons were separated from brains of 17 -day embryos. ${ }^{24}$ The neurons were seeded on poly-L-lysine-coated 24 -well plates at a density of ≈ 500000 cells cm^{-2} and cultured for 16 h in Dulbecco's modified Eagle's medium (DMEM, Sigma) with 10% fetal calf serum. Thereafter the medium was replaced with a serum-free DMEM

(R)-26b

ii

had no protective activity but weak cytotoxicity against rat embryonic neuronal cells.

Experimental

Mps were measured on a Yanagimoto micromelting apparatus and are uncorrected. Unless otherwise specified, NMR spectra were obtained with a JEOL GSX-270 or EX-400 spectrometer at ambient temperature by using CDCl_{3} as solvent, and tetramethylsilane as internal standard for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$. Mass spectra were measured with a Hitachi M80B spectrometer under the EI (electron impact, 20 eV) ionizing conditions. $[a]_{\mathrm{D}}$-Values were measured with a JASCO DIP-1000 polarimeter and are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. THF was distilled from sodium benzophenone ketyl, and dichloromethane was distilled from CaH_{2} prior to use. DMF was distilled under reduced pressure and then stored over molecular sieves (MS) $4 \AA$ A. Pyridine was distilled from CaH_{2} and stored over MS $4 \AA$.

3-Acetoxymethyl-7-chloro-5,8-dimethoxy-1-naphthol 5

To a stirred suspension of $\mathbf{4}(7.550 \mathrm{~g}, 28.1 \mathrm{mmol})$ and acetic anhydride ($3.17 \mathrm{ml}, 33.7 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml}$) was added one drop of conc. perchloric acid at room temperature. The suspension became a clear solution. After the mixture had been stirred for 2 h , aq. $\mathrm{NaHCO}_{3}(50 \mathrm{ml})$ was added. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{ml})$. The combined organic phase was washed with brine (50 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through a short column of silica gel, and concentrated to give $8.67 \mathrm{~g}(99 \%)$ of 5 . Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave $7.826 \mathrm{~g}(90 \%)$ of $\mathbf{5}$ as colorless needles (Found: C, 57.80; $\mathrm{H}, 4.84 . \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClO}_{5}$ requires $\mathrm{C}, 57.98 ; \mathrm{H}, 4.87 \%$), mp $100-$ $102^{\circ} \mathrm{C} ; R_{\mathrm{f}}$ (30% EtOAc-hexane) $0.3 ; \delta_{\mathrm{H}} 2.13(3 \mathrm{H}, \mathrm{s}), 3.96$ $(3 \mathrm{H}, \mathrm{s}), 4.03(3 \mathrm{H}, \mathrm{s}), 5.18(2 \mathrm{H}, \mathrm{s}), 6.72\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right), 6.96(1 \mathrm{H}, \mathrm{d}$, $\left.J 1.2, \mathrm{H}^{2}\right), 7.68\left(1 \mathrm{H}, \mathrm{d}, J 1.2, \mathrm{H}^{4}\right)$ and $9.44(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$; $\delta_{\mathrm{C}} 21.0,55.9,62.3,66.2,106.2$ (C-6), 111.9 (C-2 or -4), 112.8 (C-4 or C-2), 117.7, 121.7, 126.8, 135.3, 144.8 (C-8), 152.7 (C-1 or -5), 153.5 ($\mathrm{C}-5$ or $\mathrm{C}-1$) and 170.8 (C=O); m / z (rel. intensity) $312\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 34\right], 310\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 100\right], 297$ (22), 295 (64), 255 (18) and 253 (53); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3379,1738,1367,1253$ and 1055.

Halogenation of naphthols 4 and 5

NBS Method in $\mathbf{C H}_{2} \mathbf{C l}_{2}$. To a stirred solution of $\mathbf{4}(269 \mathrm{mg}$, $1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added NBS ($214 \mathrm{mg}, 1.2 \mathrm{mmol}$) at room temperature. After 2 h , the reaction was quenched by addition of 5 ml of 1 M NaHSO 3 . The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 10 \mathrm{ml})$. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through a short column of silica gel, and concentrated. The residue was chromatographed on silica gel (20-50\% EtOAc-hexane).

NBS Method in DMF. To a stirred solution of a naphthol (24 mmol) in 48 ml of dry DMF was transferred a solution of NBS $(3.560 \mathrm{~g}, 20 \mathrm{mmol})$ in dry DMF $(20+10 \mathrm{ml})$ by a cannula. The mixture was stirred overnight and then water $(300 \mathrm{ml})$ was added. The precipitates were filtered off, washed with water ($3 \times 50 \mathrm{ml}$), and dried to give the crude bromonaphthol. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$-hexane gave the pure material.

DBH Method. The reaction was carried in the same manner as above except for the use of DBH.

Iodination. To a stirred solution of a naphthol (9 mmol) and $\mathrm{I}_{2}(18 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added NMM (aq. $1.19 \mathrm{ml}, 10.8$ mmol) at room temperature. After 3 h , a mixture of aq. $\mathrm{NaHSO}_{3}(1 \mathrm{M} ; 20 \mathrm{ml})$ and water $(50 \mathrm{ml})$ was added. The mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 50 \mathrm{ml})$. The organic extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated.

The residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane and/or chromatographed on silica gel ($20-50 \%$ EtOAc-hexane).

2-Bromo-7-chloro-3-hydroxymethyl-5,8-dimethoxy-1-naphthol 6. Colorless needles (Found: C, 44.85; H, 3.47. $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{BrClO}_{4}$ requires C, $44.92 ; \mathrm{H}, 3.48 \%$), mp $184-186^{\circ} \mathrm{C}$; $R_{\mathrm{f}}(30 \% \mathrm{EtOAc}-$ hexane) 0.35 ; $\delta_{\mathrm{H}} 2.17(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.96(3 \mathrm{H}, \mathrm{s}), 4.04(3 \mathrm{H}, \mathrm{s})$, $4.86(2 \mathrm{H}, \mathrm{br}), 6.73\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right), 7.80\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{4}\right)$ and $10.20(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH}) ; \delta_{\mathrm{C}} 56.0,62.6,65.6\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 106.5(\mathrm{C}-6), 107.2,112.6$ (C-4), 117.6, 122.3, 125.2, 138.7, 143.9 (C-8), 149.5 and 152.7 ($\mathrm{C}-1$ and -5); m / z (rel. intensity) $350\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{C}^{81} \mathrm{Br}\right), 20\right], 348$ $\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}^{81} \mathrm{Br}+{ }^{37} \mathrm{Cl}^{79} \mathrm{Br}\right), 76\right], 346$ [$\left.\left.\mathrm{M}^{+}{ }^{35} \mathrm{Cl}^{79} \mathrm{Br}\right), 59\right], 335$ (24), 333 (100) and 331 (77); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3241,1600,1490,1388$, 1345 and 1050.

4-Bromo-7-chloro-3-hydroxymethyl-5,8-dimethoxy-1-naphthol 7. $\delta_{\mathrm{H}} 2.04(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.91(3 \mathrm{H}, \mathrm{s}), 3.99(3 \mathrm{H}, \mathrm{s}), 4.83(2 \mathrm{H}$, $\mathrm{br}), 6.82\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right), 7.15\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{2}\right)$ and $9.82(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$. This compound could not be isolated.

3-Acetoxymethyl-2-bromo-7-chloro-5,8-dimethoxy-1-naphthol 8. Colorless crystals (Found: C, $45.89 ; \mathrm{H}, 3.59 . \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrClO}_{5}$ requires C, $46.24 ; \mathrm{H}, 3.62 \%)$, mp $183-185^{\circ} \mathrm{C}$; $R_{\mathrm{f}}(30 \% \mathrm{EtOAc}-$ hexane) $0.65 ; \delta_{\mathrm{H}} 2.17(3 \mathrm{H}, \mathrm{s}), 3.96(3 \mathrm{H}, \mathrm{s}), 4.04(3 \mathrm{H}, \mathrm{s}), 5.30$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 6.73\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right), 7.74\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{4}\right)$ and $10.23(1 \mathrm{H}$, $\mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}} 20.9,56.0,62.5,66.3\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 106.5(\mathrm{C}-6), 107.8$, 114.1 (C-4), 117.8, 122.7, 124.8, 133.9, 143.8 (C-8), 149.7 (C-1 or -5), $152.6(\mathrm{C}-5$ or $\mathrm{C}-1)$ and $170.5(\mathrm{C}=\mathrm{O}) ; m / z$ (rel. intensity) $392\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}^{81} \mathrm{Br}\right), 26\right], 390\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{C}^{81} \mathrm{Br}+{ }^{37} \mathrm{Cl}^{79} \mathrm{Br}\right), 100\right], 388$ $\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}^{79} \mathrm{Br}\right), 77\right], 375$ (28), 373 (22), 331 (12), 267 (35), 251 (98) and 223 (53); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3211,1736,1367,1348,1250$, 1240 and 1045.
7-Chloro-3-hydroxymethyl-2-iodo-5,8-dimethoxy-1-naphthol 9. Colorless crystals (Found: C, $39.60 ; \mathrm{H}, 3.25 . \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{ClIO}_{4}$ requires C, 39.57 ; $\mathrm{H}, 3.07 \%$), mp $162-163{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}(40 \% \mathrm{EtOAc}-$ hexane) $0.6 ; \delta_{\mathrm{H}} 2.14(1 \mathrm{H}, \mathrm{t}, J 6.4, \mathrm{OH}), 3.97(3 \mathrm{H}, \mathrm{s}), 4.05(3 \mathrm{H}$, s), $4.82\left(2 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{ArCH}_{2} \mathrm{O}\right), 6.78\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right), 7.82(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}^{4}\right)$ and $10.53(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}} 56.0,62.6,69.7\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 84.3$ (C-2), 106.8 (C-6), 112.7, 116.8, 122.0, 126.2, 141.0, 143.8, 152.0 and 152.7; m/z (rel. intensity) $396\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 34\right], 394\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right)\right.$, 100], 381 (31), 379 (92) and $219(10) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3293$, 1598, 1481, 1386, 1374, 1343, 1047 and 953.
7,7'-Dichloro-1,1'-dihydroxy-3,3'-bis(hydroxymethyl)-5,5', 8,8'-tetramethoxy-2,2'-binaphthyl 10. Colorless crystals (Found: C, 52.32; H, 4.47. $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{O}_{8} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires C, $52.28 ; \mathrm{H}, 4.47 \%), \mathrm{mp} 257-259^{\circ} \mathrm{C} ; R_{\mathrm{f}}(40 \% \mathrm{EtOAc}-$ hexane $) 0.2$; $\delta_{\mathrm{H}} 2.78(2 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.99(6 \mathrm{H}, \mathrm{s}), 4.00(6 \mathrm{H}, \mathrm{s}), 4.48(2 \mathrm{H}, \mathrm{d}$, $\left.J 13.2, \mathrm{CH}_{2} \mathrm{O}\right), 4.50\left(2 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{CH}_{2} \mathrm{O}\right), 6.75\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right.$ and $\left.\mathrm{H}^{6^{\prime}}\right), 7.96\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}^{4}\right.$ and $\left.\mathrm{H}^{4}\right)$ and $9.81(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}} 56.0$, 62.5, $64.2\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 106.2(\mathrm{C}-6), 114.1$ (C-4), 117.5, 119.0, 121.9, 126.6, 139.5, 144.7, 149.7 and $152.9 ; m / z$ (rel. intensity) $536\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}^{35} \mathrm{Cl}\right), 38\right], 534\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}{ }^{35} \mathrm{Cl}\right), 60\right], 516$ (20), 500 (70), 498 (100), 485 (46), 483 (62), 468 (23) and 453 (33); $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3392,3226,1599,1488,1339$ and 1051.

3-Acetoxymethyl-7-chloro-2-iodo-5,8-dimethoxy-1-naphthol

11. Colorless crystals (Found: C, 41.10; H, 3.23. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClIO}_{5}$ requires C, $41.26 ; \mathrm{H}, 3.23 \%$), mp $164-166^{\circ} \mathrm{C} ; R_{\mathrm{f}}(30 \% \mathrm{EtOAc}-$ hexane) 0.5 ; $\delta_{\mathrm{H}} 2.18(3 \mathrm{H}, \mathrm{s}), 3.97(3 \mathrm{H}, \mathrm{s}), 4.05(3 \mathrm{H}, \mathrm{s}), 5.27(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{ArCH}_{2} \mathrm{O}\right), 6.76\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right), 7.75\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{4}\right)$ and $10.6(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH}) ; \delta_{\mathrm{C}} 20.9,55.9,62.5,70.3\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 84.7(\mathrm{C}-2), 106.6$ (C-6), 106.6 (C-4), 113.9, 122.3, 125.6, 136.2, 143.4 (C-8), 152.1 (C-1 or -5), $152.4(\mathrm{C}-5$ or $\mathrm{C}-1)$ and $170.4(\mathrm{C}=\mathrm{O}) ; \mathrm{m} / \mathrm{z}$ (rel. intensity) $436\left(\mathrm{M}^{+}, 100\right), 310(59), 252(97)$ and $223(10) ; v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3286,1737,1369,1346,1242$ and 1047.

3,3'-Bis(acetoxymethyl)-7,7'-dichloro-1,1'-dihydroxy-5,5', 8,8'-tetramethoxy-2,2'-binaphthyl 12. Colorless crystals, mp $225-226^{\circ} \mathrm{C}$ (Found: C, 57.40 ; H, 4.56. $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{O}_{10} \frac{-1}{2} \mathrm{H}_{2} \mathrm{O}$ requires C, $57.34 ; \mathrm{H}, 4.65 \%$); $R_{\mathrm{f}}(30 \% \mathrm{EtOAc}-$ hexane $) 0.3$; $\delta_{\mathrm{H}} 1.99(6 \mathrm{H}, \mathrm{s}), 3.99(6 \mathrm{H}, \mathrm{s}), 4.02(6 \mathrm{H}, \mathrm{s}), 5.05(2 \mathrm{H}, \mathrm{d}, J 13.2$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 5.08\left(2 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{CH}_{2} \mathrm{O}\right), 6.77\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right.$ and $\left.\mathrm{H}^{6}\right)$, $7.91\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}^{4}\right.$ and $\left.\mathrm{H}^{4}\right)$ and $9.78(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}} 20.8,56.0$, 62.5, $64.9\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 106.4\left(\mathrm{C}-6\right.$ and $\left.-6^{\prime}\right), 113.0\left(\mathrm{C}-4\right.$ and $\left.-4^{\prime}\right)$,
117.7, 118.3, 122.0, 126.4, 134.9, 144.9, 149.9, 152.8 and 170.5 ; m / z (rel. intensity) $620\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}{ }^{35} \mathrm{Cl}\right), 25\right], 618\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}_{2}\right), 36\right]$, $500(71), 498$ (100), 485 (29) and 483 (40); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3296$, 1734, 1344, 1246, 1234 and 1047.

3,3'-Bis(acetoxymethyl)-7,7'-dichloro-1,1'-dihydroxy-5,5', 8, 8'-tetramethoxy-2,4'-binaphthyl. $\quad R_{\mathrm{f}}(30 \%$ EtOAc-hexane) $0.25 ; \delta_{\mathrm{H}} 1.98(3 \mathrm{H}, \mathrm{s}), 2.18(3 \mathrm{H}, \mathrm{s}), 3.97(3 \mathrm{H}, \mathrm{s}), 4.00(3 \mathrm{H}, \mathrm{s}), 4.01$ $(3 \mathrm{H}, \mathrm{s}), 4.05(3 \mathrm{H}, \mathrm{s}), 5.03\left(1 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{CH}_{2} \mathrm{O}\right), 5.04(1 \mathrm{H}, \mathrm{d}$, J 13.2, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 5.27\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 6.76\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right.$ and $\left.\mathrm{H}^{6}\right)$, $7.75\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{2}\right), 7.88\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{4}\right), 9.76(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and 10.58 $(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$.

3-Acetoxymethyl-7-chloro-2-iodo-5,8-dimethoxy-1-(methoxymethoxy)naphthalene 14. The naphthol $11(5.796 \mathrm{~g}, 13.27$ mmol) and $\mathrm{NaH}(60 \%$ dispersion; $0.53 \mathrm{~g}, 13.3 \mathrm{mmol})$ were placed in a flask and dry DMF (55 ml) was added under Ar. The mixture was cooled in an ice-bath and then MOMCl (1.21 $\mathrm{ml}, 15.9 \mathrm{mmol}$) was added by a syringe. After the mixture had been stirred for 6 h , water $(500 \mathrm{ml})$ was added. The precipitates were filtered, washed with water (100 ml), and dried. The precipitates were dissolved in warm $\mathrm{CHCl}_{3}(100 \mathrm{ml})$ and the solution was filtered through a column of MgSO_{4} and silica gel, which was washed with $\mathrm{CHCl}_{3}(3 \times 50 \mathrm{ml})$. Concentration of the filtrate gave $6.26 \mathrm{~g}(98 \%)$ of $\mathbf{1 4}$ as an amber-white solid. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether-hexane gave 5.623 $\mathrm{g}(88 \%)$ of $\mathbf{1 4}$ as colorless crystals (Found: C, 42.48; H, 3.77. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClIO}_{6}$ requires C, $42.29 ; \mathrm{H}, 3.68 \%$), mp $155-157^{\circ} \mathrm{C}$; $R_{\mathrm{f}}\left(20 \%\right.$ EtOAc-hexane) $0.45 ; \delta_{\mathrm{H}} 2.19(3 \mathrm{H}, \mathrm{s}), 3.76(3 \mathrm{H}, \mathrm{s})$, $3.82(3 \mathrm{H}, \mathrm{s}), 3.97(3 \mathrm{H}, \mathrm{s}), 5.13\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.29(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArCH} \mathrm{H}_{2} \mathrm{O}\right), 6.84\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right)$ and $8.06\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{4}\right) ; \delta_{\mathrm{C}} 20.9,55.9$, 56.0, 59.1, $70.7\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 97.8(\mathrm{C}-2), 101.7\left(\mathrm{OCH}_{2} \mathrm{O}\right), 107.1$ (C-6), 119.5 (C-4), 122.8, 126.4, 126.9, 135.7, 143.4, 151.6, 152.1 and $170.5(\mathrm{C}=\mathrm{O}) ; m / z$ (rel. intensity) $480\left(\mathrm{M}^{+}, 33\right), 436(13), 376$ (53), 293 (100) and 266 (21); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1743,1583,1321$, 1228 and 1049.

7-Chloro-3-hydroxymethyl-2-iodo-5,8-dimethoxy-1-(methoxymethoxy)naphthalene 16. The acetate $\mathbf{1 4}(2.20 \mathrm{~g}, 4.58 \mathrm{mmol})$ was dissolved in freshly distilled THF (100 ml) and $\mathrm{MeOH}(35 \mathrm{ml})$. To the stirred solution was added aq. $\mathrm{NaOH}(1.0 \mathrm{M} ; 15 \mathrm{ml})$ at room temperature. After 1 h , brine (100 ml) was added. The suspension was extracted with EtOAc $(3 \times 50 \mathrm{ml})$. The organic phase was washed with brine (50 ml), dried over MgSO_{4}, and concentrated to give a crude product. Chromatography on silica gel ($20-30 \%$ EtOAc-hexane) gave 2.08 g of $\mathbf{1 6}$ as colorless crystals (Found: C, 41.04; H, 3.66. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClIO}_{5}$ requires C, 41.07; $\mathrm{H}, 3.68 \%$) $\mathrm{mp} 134-135^{\circ} \mathrm{C} ; R_{\mathrm{f}}(40 \%$ EtOAc-hexane) 0.55 ; $\delta_{\mathrm{H}} 2.75(1 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{OH}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.91(3 \mathrm{H}$, s), $4.75\left(2 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{CH}_{2} \mathrm{OH}\right), 5.15\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.74(1 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{H}^{6}\right)$ and $7.95\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{4}\right) ; \delta_{\mathrm{C}} 55.9,59.0,61.7$, $69.9\left(\mathrm{ArCH}_{2} \mathrm{O}\right)$, $96.6(\mathrm{C}-2), 101.8\left(\mathrm{OCH}_{2} \mathrm{O}\right), 106.7(\mathrm{C}-6), 117.4(\mathrm{C}-4), 122.2$ (C-8a), 125.3 (C-7 or -4a), 127.1 (C-4a or -8), 140.2 (C-3), 143.2 (C-8), 151.2 (C-1) and $151.8(\mathrm{C}-5) ; \mathrm{m} / \mathrm{z}$ (rel. intensity) $438\left(\mathrm{M}^{+}\right.$, 77), 375 (66), 311 (17), 279 (43) and 251 (100); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3434, 1585, 1477, 1455, 1411, 1330, 1311, 1247, 1211 and 1187.

General procedure for condensation of 3-(hydroxymethyl)naphthalenes 15 and 16 with alkynoic acid

To a solution of a 3-(hydroxymethyl)naphthalene (1.5 mmol), alkynoic acid (1.8 mmol) and $\mathrm{Et}_{3} \mathrm{~N}(0.50 \mathrm{ml}, 3.6 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was added N, N-bis(2-oxooxazolidin-3-yl)phosphorodiamidic chloride $(\mathrm{BOPCl})(458 \mathrm{mg}, 1.8 \mathrm{mmol})$ at room temperature under argon. After 20 h , the reaction mixture was quenched by addition of saturated aq. NaHCO_{3} $(10 \mathrm{ml})$. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CHCl}_{3}(3 \times 20 \mathrm{ml})$. The combined organic phases were washed with brine (50 ml), dried over MgSO_{4}, and concentrated to give a crude product, which was purified by recrystallization or column chromatography on silica gel.

7-Chloro-2-iodo-5,8-dimethoxy-1-methoxymethoxy-3-[(4-methylpent-2-ynoyloxy)methyl]naphthalene 18a. 87\% Yield; colorless crystals (Found: C, 47.08; H, 4.15. $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{ClIO}_{6}$ requires C, $47.34 ; \mathrm{H}, 4.16 \%), \mathrm{mp} 161-163{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}(30 \% \mathrm{EtOAc}-$ hexane) 0.7 ; $\delta_{\mathrm{H}} 1.24(6 \mathrm{H}, \mathrm{d}, J 6.8), 2.71(1 \mathrm{H}$, sept, $J 6.8), 3.76$ $(3 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.97(3 \mathrm{H}, \mathrm{s}), 5.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.38$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{O}\right), 6.84\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right)$ and $8.09\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{4}\right) ; \delta_{\mathrm{C}} 20.6$ $\left(\mathrm{CHMe}_{2}\right), 21.7(\mathrm{CHMe}), 56.1,59.1,61.8,71.9\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 72.0$ $(\mathrm{COC} \equiv), 95.1\left(\equiv C \mathrm{Pr}^{\mathrm{i}}\right), 97.9(\mathrm{C}-2), 101.8\left(\mathrm{OCH}_{2} \mathrm{O}\right), 107.2(\mathrm{C}-6)$, 120.2 (C-4), 123.0, 126.3, 127.0, 134.8, 143.4, 151.7, 152.2 and 153.5; m / z (rel. intensity) $534\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 8\right], 532\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 10\right]$, $376(81), 293(33), 129(100)$ and $112(45) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2235$, $1714,1587,1251$ and 1165.
(S)-7-Chloro-2-iodo-5,8-dimethoxy-1-methoxymethoxy-3-[(4-methylhex-2-ynoyloxy)methyl]naphthalene (S)-18b. 90\% Yield; colorless crystals (Found: C, 48.65 ; H, 4.46. $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{ClIO}_{6}$ requires $\mathrm{C}, 48.33 ; \mathrm{H}, 4.42 \%), \mathrm{mp} 144-146^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{27}-5.06(c 1.00$, $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}(30 \% \mathrm{EtOAc}-$ hexane $) 0.7 ; \delta_{\mathrm{H}} 1.03(3 \mathrm{H}, \mathrm{t}, J 7.3), 1.23$ $(3 \mathrm{H}, \mathrm{d}, J 6.8), 1.57(2 \mathrm{H}, \mathrm{m}), 2.53(1 \mathrm{H}, \mathrm{m}), 3.76(3 \mathrm{H}, \mathrm{s}), 3.82$ $(3 \mathrm{H}, \mathrm{s}), 3.97(3 \mathrm{H}, \mathrm{s}), 5.13\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.38(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArCH}_{2} \mathrm{O}\right), 6.84\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right)$ and $7.26\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{4}\right) ; \delta_{\mathrm{C}} 11.6$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 19.4\left(\mathrm{CHCH}_{3}\right), 27.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 28.9\left(\mathrm{CHCH}_{3}\right)$, 56.1, 59.1, 61.8, $71.8\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 73.1(\mathrm{COC} \equiv), 94.3\left(\equiv \mathrm{CBu}^{s}\right)$, $97.8(\mathrm{C}-2), 101.8\left(\mathrm{OCH}_{2} \mathrm{O}\right), 107.2(\mathrm{C}-6), 120.1(\mathrm{C}-4), 123.0$, $126.3,127.0,134.9,143.4,151.7,152.5$ and $153.5 ; \mathrm{m} / \mathrm{z}$ (rel. intensity) $548\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 1\right], 546\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 3\right], 376$ (100), 293 (31), 249 (12) and 109 (3); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1714,1585,1332$, 1321, 1247 and 1054.
(R)-18b: 90% yield; $[\alpha]_{\mathrm{D}}^{27}+14.5\left(c 1.07, \mathrm{CHCl}_{3}\right)$.

General procedure for nucleophilic acyl-transfer reaction

To a stirred solution of an ester $\mathbf{1 3}, \mathbf{1 4}, \mathbf{1 7}$ or $18(1 \mathrm{mmol})$ in THF (20 ml) was slowly added a solution of $\mathrm{BuLi}(1.2 \mathrm{mmol})$ at the indicated temperature in the text under argon. After 1 h , water $(20 \mathrm{ml})$ was added and then the mixture was warmed to room temperature. The mixture was extracted with EtOAc $(3 \times 20 \mathrm{ml})$. The extract was washed with brine (50 ml), dried over MgSO_{4}, and concentrated. The residue was purified by silica gel column chromatography ($20-50 \% \mathrm{EtOAc}$-hexane) to give 2-acylnaphthalene $\mathbf{1 9}$ or $\mathbf{2 1}$, which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether-hexane if necessary.

2-Acetyl-7-chloro-3-hydroxymethyl-5,8-dimethoxy-1(methoxymethoxy)naphthalene 19. Colorless crystals (Found: C, 57.17; H, 5.35. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClO}_{6}$ requires $\mathrm{C}, 57.55 ; \mathrm{H}, 5.40 \%$), mp $125-128^{\circ} \mathrm{C} ; R_{\mathrm{f}}(20 \% \mathrm{EtOAc}-$ hexane $) 0.3 ; 19$ exists as a $1: 7$ mixture of keto and hemiketal forms. Keto form: $\delta_{\mathrm{H}} 2.74(3 \mathrm{H}, \mathrm{s}$, Ac), $2.90(1 \mathrm{H}, \mathrm{t}, J 5.9, \mathrm{OH}), 3.46(3 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s}), 3.96(3 \mathrm{H}$, s), $4.63\left(2 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{CH}_{2} \mathrm{OH}\right), 5.07\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.84(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}^{6}\right)$ and $8.04\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{4}\right)$; δ_{C} (typical signals) $32.9,55.9,58.1$, 61.7, $63.9\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 102.3\left(\mathrm{OCH}_{2} \mathrm{O}\right), 107.5(\mathrm{C}-6), 119.6$ and 206.0 (Ac).

Hemiketal form: $\delta_{\mathrm{H}} 2.01(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.54(3 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}$, s), $3.96(3 \mathrm{H}, \mathrm{s}), 4.66(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 5.03\left(1 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{OCH}_{2} \mathrm{O}\right)$, $5.10\left(1 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{CH}_{2} \mathrm{OH}\right), 5.22\left(1 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{OCH}_{2} \mathrm{O}\right), 5.30$ $\left(1 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{CH}_{2} \mathrm{OH}\right), 6.81\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right)$ and $7.90\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{4}\right)$; $\delta_{\mathrm{C}} 27.3,56.0,57.5,61.5,70.5\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 101.5\left(\mathrm{OCH}_{2} \mathrm{O}\right), 106.5$, 106.5 (C-1 and C-6), 111.4 (C-4), 122.6, 124.8, 129.1, 135.6, 138.8, 144.7 (C-8), 146.7 (C-1) and 152.1 (C-5); m / z (rel. intensity) $356\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 38\right], 354\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 100\right], 250(55)$ and 249 (53); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3444,1643,1599,1508,1344$ and 1052.

2-Chloro-6-hydroxymethyl-1,4-dimethoxy-8-(methoxy-

methoxy)naphthalene 20. Colorless needles (Found: C, 57.37; H, 5.39. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ClO}_{5}$ requires C , $57.61 ; \mathrm{H}, 5.48 \%$), mp $108-109{ }^{\circ} \mathrm{C}$; $R_{\mathrm{f}}\left(20 \%\right.$ EtOAc-hexane) $0.25 ; \delta_{\mathrm{H}} 2.32(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.59(3 \mathrm{H}$, s), $3.86(3 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s}), 4.76\left(2 \mathrm{H}, \mathrm{br}, \mathrm{ArCH}_{2} \mathrm{OH}\right), 5.29(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.76\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{3}\right), 7.16\left(1 \mathrm{H}, \mathrm{d}, J 1.0, \mathrm{H}^{7}\right)$ and 7.82
$\left(1 \mathrm{H}, \mathrm{d}, J 1.0, \mathrm{H}^{5}\right) ; \delta_{\mathrm{C}} 55.8\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 56.5(\mathrm{MeO}), 61.5(\mathrm{MeO})$, $65.1(\mathrm{MeO}), 96.3\left(\mathrm{OCH}_{2} \mathrm{O}\right), 106.5(\mathrm{C}-3), 112.6,114.0,121.1$, $124.5,127.5,138.8,145.1(\mathrm{C}-1), 151.7$ and $152.9 ; \mathrm{m} / \mathrm{z}$ (rel. intensity) $314\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 36\right], 312\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 100\right], 282$ (12), 267 (23), 250 (22), 249 (16) and 237 (12); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3487,1591$, 1342, 1263, 1145, 1055 and 970.

7-Chloro-3-hydroxymethyl-5,8-dimethoxy-1-(methoxy-methoxy)-2-(4-methylpent-2-ynoyl)naphthalene 21a. Pale yellow crystals (Found: C, 61.77; H, 5.78. $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClO}_{6}$ requires C, $61.99 ; \mathrm{H}, 5.70 \%$), mp $128-130{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}(30 \%$ EtOAc-hexane) 0.35; 21a exists as a 5:1 mixture of keto and hemiketal forms. Keto form: $\delta_{\mathrm{H}} 1.18(6 \mathrm{H}, \mathrm{d}, J 6.8), 2.73(1 \mathrm{H}$, sept, $J 6.8), 3.27$ $(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.54(3 \mathrm{H}, \mathrm{s}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.84(3 \mathrm{H}, \mathrm{s}), 4.66(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 5.06\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.70\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right)$ and $7.90(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}^{4}\right) ; \delta_{\mathrm{C}} 20.9\left(\mathrm{CHMe}_{2}\right), 21.6(\mathrm{CHMe}), 55.7,57.9,61.5,62.8$ $\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 82.0\left(\mathrm{C}-2^{\prime}\right), 101.8\left(\mathrm{OCH}_{2} \mathrm{O}\right), 101.9\left(\mathrm{C}-3^{\prime}\right), 107.4$, 118.1, 122.0, 125.5, 127.7, 133.3, 136.1, 144.4, 150.8, 151.7 and 181.6 (C-1').

Hemiketal form: $\delta_{\mathrm{H}} 1.13(3 \mathrm{H}, \mathrm{d}, J 6.8), 1.15(3 \mathrm{H}, \mathrm{d}, J 6.8)$, $2.60(1 \mathrm{H}$, sept, $J 6.8), 3.68(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.87(3 \mathrm{H}, \mathrm{s})$, $5.02\left(1 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{OCH}_{2} \mathrm{O}\right), 5.13\left(1 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{ArCH}_{2} \mathrm{O}\right), 5.19$ $\left(1 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{OCH}_{2} \mathrm{O}\right), 5.24\left(1 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{ArCH}_{2} \mathrm{O}\right), 5.42(1 \mathrm{H}$, $\mathrm{br}, \mathrm{OH}), 6.71\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right)$ and $7.77\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{4}\right)$; δ_{C} (typical signals) $71.0\left(\mathrm{CH}_{2} \mathrm{O}\right), 78.5,90.3,98.4$ (hemiketal C), 102.0 $\left(\mathrm{OCH}_{2} \mathrm{O}\right), 123.0,124.7,129.0,133.3,134.8,137.6,144.7,146.8$ 150.8 and $151.0 ; \mathrm{m} / \mathrm{z}$ (rel. intensity) $408\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 8\right], 406$ [$\left.\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 23\right], 346$ (100), 331 (81), 329 (64), 308 (45), 276 (53) and $265(85) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3508,3332,2214,1655,1635$, 1587, 1333, 1215 and 1047.
(S)-7-Chloro-3-hydroxymethyl-5,8-dimethoxy-1-(methoxy-methoxy)-2-(4-methylhex-2-ynoyl)naphthalene (\boldsymbol{S})-21b. Pale yellow crystals (Found: C, $62.40 ; \mathrm{H}, 5.83 . \mathrm{C}_{22} \mathrm{H}_{25} \mathrm{ClO}_{6}$ requires C, $62.78 ; \mathrm{H}, 5.99 \%)$, mp $92-93{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{31}+11.6\left(c 0.65, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}$ ($30 \% \mathrm{EtOAc}$-hexane) 0.45 ; 21b exists as a $6: 1$ mixture of keto and hemiketal forms. Keto form: $\delta_{\mathrm{H}} 1.03\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{H}^{6}\right), 1.24$ $\left(3 \mathrm{H}, \mathrm{d}, J 7.3,4^{\prime}-\mathrm{Me}\right), 1.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{5^{\prime}}\right), 2.63\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{4^{\prime}}\right), 3.04$ $(1 \mathrm{H}$, br t, $J 6.4, \mathrm{OH}), 3.58(3 \mathrm{H}, \mathrm{s}), 3.84(3 \mathrm{H}, \mathrm{s}), 3.95(3 \mathrm{H}, \mathrm{s}), 4.71$ $\left(2 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{ArCH}_{2} \mathrm{O}\right), 5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.83\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right)$ and $8.04\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{4}\right) ; \delta_{\mathrm{C}} 11.5\left(\mathrm{C}-6^{\prime}\right), 19.4\left(4^{\prime}-\mathrm{Me}\right), 28.1\left(\mathrm{C}-5^{\prime}\right)$, $29.0\left(\mathrm{C}-4^{\prime}\right), 56.0,58.1,61.6,63.6\left(\mathrm{CH}_{2} \mathrm{OH}\right), 83.3\left(\mathrm{C}-2^{\prime}\right), 101.3$ $\left(\mathrm{C}-3^{\prime}\right), 102.2\left(\mathrm{OCH}_{2} \mathrm{O}\right), 107.8,119.0,122.3,125.9,128.0,133.9$, 136.2, 144.7, 151.4, 152.0 and 181.8 (C-1').

Hemiketal form ($1: 1$ diastereomeric mixture): $\delta_{\mathrm{H}} 1.02(3 \mathrm{H}$ both, $\left.\mathrm{t}, J 7.3, \mathrm{H}^{5^{\prime}}\right), 1.18(3 \mathrm{H}$ of one diastereomer, $\mathrm{d}, J 7.3$, $\left.4^{\prime}-\mathrm{Me}\right), 1.19$ (3 H of another diastereomer, d, $J 7.3,4^{\prime}-\mathrm{Me}$), 1.53 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{4^{\prime}}\right), 2.49\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{3^{\prime}}\right), 3.71(3 \mathrm{H}$ of one diastereomer, s), $3.72(3 \mathrm{H}$ of another diastereomer, s), 3.85 (3 H both, s), $3.96\left(3 \mathrm{H}\right.$ both, s), $5.0-5.4\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{OH}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{OMe}\right)$, $6.81\left(1 \mathrm{H}\right.$ both, br s, $\left.\mathrm{H}^{6}\right)$ and $7.89\left(1 \mathrm{H}\right.$ both, br s, $\left.\mathrm{H}^{4}\right) ; \delta_{\mathrm{C}} 14.0$ (C-6'), 15.2 (C-6'), $20.2\left(4^{\prime}-\mathrm{Me}\right), 20.2$ ($\left.4^{\prime}-\mathrm{Me}\right), 27.5$ (C-5'), 27.5 (C-5'), 29.5 (C-4'), 29.6 (C-4'), 57.9, 61.5, 65.8, 71.2 (C-3), 71.2 (C-3), 79.8 (C-1'), 89.3, 98.5, 101.4, 101.4, 102.2, $106.6,111.3,123.0,124.8,129.2,135.1,137.8,137.8,144.9$ and 147.0; m / z (rel. intensity) $420\left(\mathrm{M}^{+}, 27\right), 360$ (100), 343 (75), 330 (60), 294 (72), 265 (97) and 248 (58); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3456$, $2200,1650,1334$ and 1068.
(R)-21b: $[\alpha]_{\mathrm{D}}^{27}-10.7\left(c 0.65, \mathrm{CHCl}_{3}\right)$.

6-(Buta-2,3-dienoyloxymethyl)-2-chloro-1,4-dimethoxy-8(methoxymethoxy)naphthalene 22. White solid, $R_{\mathrm{f}}(30 \%$ EtOAc-hexane) 0.55; $\delta_{\mathrm{H}} 3.60(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO})$, $3.96(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 5.25\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}\right), 5.28(2 \mathrm{H}, \mathrm{s}), 5.31(2 \mathrm{H}$, s), $5.71(1 \mathrm{H}, \mathrm{t}, J 6.4, \mathrm{COCH}=), 6.81\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{3}\right), 7.19\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{7}\right)$ and $7.92\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{5}\right) ; \delta_{\mathrm{C}} 55.9(\mathrm{MeO}), 56.5(\mathrm{MeO}), 61.6(\mathrm{MeO})$, $66.6\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 79.4\left(=\mathrm{CH}_{2}\right), 87.8(\mathrm{COCH}=), 96.5\left(\mathrm{OCH}_{2} \mathrm{O}\right)$, 106.7, 113.5, 116.0, 121.6, 125.1, 127.4, 133.5, 145.2, 151.8, 153.0, $165.7(\mathrm{C}=\mathrm{O})$ and $216.1(=\mathrm{C}=) ; \mathrm{m} / \mathrm{z}$ (rel. intensity) 380 $\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 33\right], 378\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 100\right], 316$ (15), 301 (18), 250 (76)
and 249 (49); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1968,1938,1720,1590,1342$, 1159 and 1053.

8-Chloro-7,10-dimethoxy-6-(methoxymethoxy)-3-methylnaphtho $[2,3-c]$ oxepin-5(1H)-one 23. Pale yellow crystals (Found: $\mathrm{C}, 60.14 ; \mathrm{H}, 5.09 . \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{ClO}_{6}$ requires C, $60.24 ; \mathrm{H}, 5.06 \%$), mp $175-177{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}\left(30 \%\right.$ EtOAc-hexane) $0.4 ; \delta_{\mathrm{H}} 2.00(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me})$, $3.53(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 3.98(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 5.07$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.22\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}^{1}\right), 5.54\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{4}\right), 6.88(1 \mathrm{H}, \mathrm{s}$, H^{9}) and $7.99\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{11}\right) ; \delta_{\mathrm{C}} 22.2(3-\mathrm{Me}), 56.1(\mathrm{MeO}), 57.7$ $(\mathrm{MeO}), 61.9(\mathrm{MeO}), 74.9(\mathrm{C}-1), 102.2\left(\mathrm{OCH}_{2} \mathrm{O}\right), 107.9,108.4$, $118.9,124.0,126.7,127.8,130.5,135.3,145.5,150.2,152.0$, 168.5 (C-3) and 190.5 (C-5); m / z (rel. intensity) $380\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right)\right.$, 42], $378\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 100\right], 316$ (17), 301 (19), 251 (37), 250 (88) and $249(59) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1652,1616,1592,1456,1331$, 1155 and 1045.

General procedure for benzoylation of alcohols 21a-e

To a stirred solution of an alcohol 21a-e (1 mmol) in dry pyridine (5 ml) was slowly added freshly distilled benzoyl chloride $(1.1 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under argon. After 3 h , water (20 ml) was added and the mixture was warmed to room temperature. The mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 20 \mathrm{ml})$. The combined extract was washed successively with cool aq. $\mathrm{HCl}(3 \mathrm{M} ; 3 \times 20$ $\mathrm{ml})$, saturated aq. $\mathrm{NaHCO}_{3}(50 \mathrm{ml})$ and brine $(50 \mathrm{ml})$, dried over MgSO_{4}, and concentrated. The residue was purified by silica gel column chromatography to give the corresponding benzoyl ester 25a-e, which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ diethyl ether-hexane if necessary.

3-Benzoyloxymethyl-7-chloro-5,8-dimethoxy-1-(methoxy-methoxy)-2-(4-methylpent-2-ynoyl)naphthalene 25a. 69\% Yield; yellow crystals (Found: C, $65.68 ; \mathrm{H}, 5.42 . \mathrm{C}_{28} \mathrm{H}_{27} \mathrm{ClO}_{7}$ requires C, $65.82 ; \mathrm{H}, 5.33 \%), \mathrm{mp} 135-137^{\circ} \mathrm{C} ; R_{\mathrm{f}}(30 \% \mathrm{EtOAc}-$ hexane $)$ $0.55 ; \delta_{\mathrm{H}} 1.16(6 \mathrm{H}, \mathrm{d}, J 6.8), 2.68(1 \mathrm{H}$, sept, $J 6.8), 3.59(3 \mathrm{H}, \mathrm{s})$, $3.86(3 \mathrm{H}, \mathrm{s}), 3.95(3 \mathrm{H}, \mathrm{s}), 5.11\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.60(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{OBz}\right), 6.87\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right), 7.41(2 \mathrm{H}, \mathrm{m}, \mathrm{Bz}), 7.53(1 \mathrm{H}, \mathrm{m}, \mathrm{Bz})$, $8.07(2 \mathrm{H}, \mathrm{m}, \mathrm{Bz})$ and $8.15\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{4}\right) ; \delta_{\mathrm{C}} 20.9\left(C \mathrm{HMe}_{2}\right), 21.6$ $(\mathrm{CHMe} 2), 56.0(\mathrm{MeO}), 57.9(\mathrm{MeO}), 61.7(\mathrm{MeO}), 64.7\left(\mathrm{CH}_{2} \mathrm{Bz}\right)$, 81.9 (C-2'), $101.2\left(\mathrm{C}-3^{\prime}\right), 102.1\left(\mathrm{OCH}_{2} \mathrm{O}\right), 107.8,120.1,123.0$, $126.4,127.4,128.2,128.2,129.8,130.5,132.9,133.9,144.7$, $150.5,152.0,166.0$ and $180.3\left(\mathrm{C}-1^{\prime}\right) ; \mathrm{m} / \mathrm{z}$ (rel. intensity) 510 $\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 3\right], 450(10), 405(5), 373$ (13), 344 (21) and 105 (100); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2203,1714,1663,1335,1267,1036,917$ and 714.
(S)-3-Benzoyloxymethyl-7-chloro-5,8-dimethoxy-1-(methoxy-methoxy)-2-(4-methylhex-2-ynoyl)naphthalene (S)-25b. 87\% Yield; yellow crystals (Found: C, 66.20; H, 5.54. $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{ClO}_{7}$ requires $\mathrm{C}, 66.35 ; \mathrm{H}, 5.57 \%)$, $\mathrm{mp} 97-99^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{31}+10.7(c 0.98$, $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}(30 \% \mathrm{EtOAc}-$ hexane $) 0.6 ; \delta_{\mathrm{H}} 0.95\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{H}^{6^{\prime}}\right)$, $1.14\left(3 \mathrm{H}, \mathrm{d}, J 6.8,4^{\prime}-\mathrm{Me}\right), 1.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{5^{\prime}}\right), 2.50\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{4^{\prime}}\right)$, $3.58(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 3.97(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 5.10$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OMe}\right), 5.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OBz}\right), 6.87\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right)$, $7.41(2 \mathrm{H}, \mathrm{m}, \mathrm{Bz}), 7.54(1 \mathrm{H}, \mathrm{m}, \mathrm{Bz}), 8.06(2 \mathrm{H}, \mathrm{m}, \mathrm{Bz})$ and 8.16 $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{4}\right) ; \delta_{\mathrm{C}} 11.5\left(\mathrm{C}-6^{\prime}\right), 19.3$ ($\left.4^{\prime}-\mathrm{Me}\right), 28.0\left(\mathrm{C}-5^{\prime}\right), 29.0\left(\mathrm{C}-4^{\prime}\right)$, $56.0(\mathrm{MeO}), 58.0(\mathrm{MeO}), 61.7(\mathrm{MeO}), 64.7\left(\mathrm{CH}_{2} \mathrm{OBz}\right), 83.1$ (C-2'), $100.5\left(\mathrm{C}-3^{\prime}\right), 102.2\left(\mathrm{OCH}_{2} \mathrm{OMe}\right), 107.8,120.2,123.0$, $126.4,127.5,128.2,129.9,130.6,133.0,133.9,134.1,144.8$, $150.7,152.1,166.1$ (COPh) and $180.4\left(\mathrm{C}-1^{\prime}\right) ; m / z$ (rel. intensity) $526\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 1\right], 524\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 3\right], 464$ (10), 419 (5), 387 (8), 343 (10) and 105 (100); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2204,1716,1648$ and 1590.
$(R)-\mathbf{2 5 b}:[\alpha]_{\mathrm{D}}^{28}-9.72\left(c 0.99, \mathrm{CHCl}_{3}\right)$.

General procedure for intramolecular reaction of alkynones 25a-e

A solution of an alkynone $\mathbf{2 5 a} \mathbf{a}-\mathbf{e}(1 \mathrm{mmol})$ in a mixture of THF $(10 \mathrm{ml})$, propan-2-ol $(5 \mathrm{ml})$ and aq. $\mathrm{HCl}(3 \mathrm{M} ; 3 \mathrm{ml})$ was refluxed for 24 h . The mixture was cooled to room temperature
and then quenched with saturated aq. $\mathrm{NaHCO}_{3}(\approx 30 \mathrm{ml})$. The reaction mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 20 \mathrm{ml})$. The combined extract was washed with brine (50 ml), dried over MgSO_{4}, and concentrated. The residue was purified by silica gel or activated alumina column chromatography.

Prior treatment with $\mathbf{E t}_{\mathbf{2}} \mathbf{N H}$. To a stirred solution of an alkynone $\mathbf{2 5}(1 \mathrm{mmol})$ in a mixture of THF $(10 \mathrm{ml})$ and propan-2-ol (5 ml) was added diethylamine $(0.2 \mathrm{ml}, 2 \mathrm{mmol})$ at room temperature under argon. After the consumption of $\mathbf{2 5}$ was checked by TLC (ca. 24 h), aq. $\mathrm{HCl}(3 \mathrm{M}, 2 \mathrm{ml})$ was added and the mixture was refluxed for 16 h . The mixture was cooled to room temperature and then quenched with saturated aq. $\mathrm{NaHCO}_{3}(\approx 30 \mathrm{ml})$. The mixture was extracted with CHCl_{3} $(3 \times 20 \mathrm{ml})$. The combined extract was washed with brine (50 ml), dried over MgSO_{4}, and concentrated. The residue was purified by silica gel column chromatography.

8-Chloro-6-hydroxy-7,10-dimethoxy-3-(1-methylethyl)-

 naphtho[2,3-c]oxepin-5(1H)-one 24. Pale yellow crystals (Found: C, 62.52; H, 5.32. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{ClO}_{5}$ requires $\mathrm{C}, 62.90 ; \mathrm{H}$, $5.28 \%), \operatorname{mp} 207-209{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}(30 \% \mathrm{EtOAc}-$ hexane $) 0.25 ; \delta_{\mathrm{H}} 1.20$ $(6 \mathrm{H}, \mathrm{d}, J 6.8), 2.93(1 \mathrm{H}$, sept, $J 6.8), 3.96(3 \mathrm{H}, \mathrm{s}), 4.09(3 \mathrm{H}, \mathrm{s})$, $5.58\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}^{1}\right), 6.57\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{4}\right), 6.77\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{9}\right), 7.61(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}^{11}\right)$ and $10.62(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 19.1,41.0,56.1,62.6,75.6(\mathrm{C}-1), 99.6$ (C-4), 105.2, 107.6, 116.8, 117.5, 121.8, 128.6, 140.0, 145.8, $151.4,152.3,164.9(\mathrm{C}-3)$ and $203.5(\mathrm{C}-5) ; \mathrm{m} / \mathrm{z}$ (rel. intensity) 364 [$\left.\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 12\right], 362\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 32\right], 321$ (36), 319 (100), 304 (16), 294 (20) and $289(16) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1599,1507,1358,1209$ and 1029.5-Benzoyloxymethyl-9-chloro-7,10-dimethoxy-2-(1-methyl-ethyl)naphtho[1,2-b]pyran-4-one 26a. Pale yellow crystals (Found: C, $65.58 ; \mathrm{H}, 4.42 . \mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClO}_{6}$ requires $\mathrm{C}, 65.68 ; \mathrm{H}$, $4.36 \%), \mathrm{mp} 169-171^{\circ} \mathrm{C} ; R_{\mathrm{f}}(30 \% \mathrm{EtOAc}-$ hexane $) 0.45 ; \delta_{\mathrm{H}} 2.53$ $(3 \mathrm{H}, \mathrm{s}), 3.95(3 \mathrm{H}, \mathrm{s}), 3.97(3 \mathrm{H}, \mathrm{s}), 6.15\left(2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{OBz}\right), 6.34(1 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{H}^{3}\right), 7.01\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{8}\right), 7.47(2 \mathrm{H}, \mathrm{m}, \mathrm{Bz}), 7.57(1 \mathrm{H}, \mathrm{m}, \mathrm{Bz}), 8.17$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{Bz})$ and $8.27\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right) ; \delta_{\mathrm{C}} 20.0,56.2,61.3,65.8$ $\left(\mathrm{CH}_{2} \mathrm{OBz}\right), 109.8(\mathrm{C}-3), 112.9(\mathrm{C}-11), 117.4(\mathrm{C}-6), 119.2$ (C-10a), 119.9 (C-4b), 127.0 (C-9), 127.1 (C-6a), 128.3, 129.8, $130.5,132.9,133.0,145.4,151.6,154.5,164.3,166.2(\mathrm{C}=\mathrm{O})$ and $179.1(\mathrm{C}=\mathrm{O}) ; \mathrm{m} / \mathrm{z}$ (rel. intensity) $440 \quad\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 1\right], 438$ $\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 3\right], 335$ (35), 333 (100), 305 (8), 303 (23) and 105 (5); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1718,1654,1619,1335,1273$ and 1068.
(S)-5-Benzoyloxymethyl-9-chloro-7,10-dimethoxy-2-(1-methylpropyl)naphtho[1,2-b]pyran-4-one (\mathbf{S})-26b. Pale yellow crystals (Found: C, $67.29 ; \mathrm{H}, 5.21 . \mathrm{C}_{27} \mathrm{H}_{25} \mathrm{ClO}_{6}$ requires C , $67.43 ; \mathrm{H}, 5.24 \%), \operatorname{mp~} 141-142{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{29}-2.64\left(c 1.00, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}$ (30% EtOAc-hexane) $0.5 ; \delta_{\mathrm{H}} 1.01\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{H}^{3^{\prime}}\right), 1.40(3 \mathrm{H}$, $\left.\mathrm{d}, J 6.8,1^{\prime}-\mathrm{Me}\right), 1.74\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2^{\prime}}\right), 1.94\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2^{\prime}}\right), 2.76(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}^{1^{\prime}}\right), 3.91(3 \mathrm{H}, \mathrm{s}), 3.93(3 \mathrm{H}, \mathrm{s}), 6.12\left(2 \mathrm{H}, \mathrm{C} \mathrm{H}_{2} \mathrm{OBz}\right), 6.32(1 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{H}^{3}\right), 6.95\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{8}\right), 7.45(2 \mathrm{H}, \mathrm{m}, \mathrm{Bz}), 7.56(1 \mathrm{H}, \mathrm{m}, \mathrm{Bz}), 8.15$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{Bz})$ and $8.21\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right) ; \delta_{\mathrm{C}} 11.5\left(\mathrm{C}-3^{\prime}\right), 17.5\left(1^{\prime}-\mathrm{Me}\right)$, 27.2 (C-2'), $39.9\left(\mathrm{C}^{\prime} 1^{\prime}\right), 56.0,61.4,65.6\left(\mathrm{CH}_{2} \mathrm{OBz}\right), 109.6(\mathrm{C}-3)$, 110.8 (C-11), 116.9 (C-5), 119.0, 119.9, 126.7, 126.9, 128.2, $129.6,130.3,132.7,132.8,145.5,151.3,154.5,166.0,171.8$ $(\mathrm{C}=\mathrm{O})$ and $179.2(\mathrm{C}=\mathrm{O}) ; m / z$ (rel. intensity) $482\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 1\right]$, $480\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 3\right], 377(36), 375(100)$ and $345(11) ; v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 1716,1651,1626,1489,1336,1273$ and 710.
(R)-26b: $[\alpha]_{\mathrm{D}}^{28}+1.98\left(c 1.02, \mathrm{CHCl}_{3}\right)$.

5-Benzoyloxymethyl-9-chloro-7,10-dimethoxy-2-phenyl-naphtho[1,2-b]pyran-4-one 26d. Pale yellow crystals (Found: C, 68.58; $\mathrm{H}, 4.33 . \mathrm{C}_{29} \mathrm{H}_{21} \mathrm{ClO}_{6} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 68.31 ; \mathrm{H}$, $4.35 \%), \operatorname{mp} 236-240^{\circ} \mathrm{C} ; R_{\mathrm{f}}(33 \% \mathrm{EtOAc}-$ hexane $) 0.4 ; \delta_{\mathrm{H}} 3.85$ $(3 \mathrm{H}, \mathrm{s}), 3.96(3 \mathrm{H}, \mathrm{s}), 6.18\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{O}\right), 6.95\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{3}\right)$, $7.03\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{8}\right), 7.47(2 \mathrm{H}, \mathrm{m}), 7.57(4 \mathrm{H}, \mathrm{m}), 8.17(4 \mathrm{H}, \mathrm{m})$ and $8.31\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right) ; \delta_{\mathrm{C}} 56.3,61.7,65.8\left(\mathrm{CH}_{2} \mathrm{OBz}\right), 109.7(\mathrm{C}-3)$, 110.0 (C-11), 117.8 (C-5), 119.3, 120.5, 126.5, 127.1, 127.4,
128.4, 129.2, 129.8, 130.5, 131.5, 131.7, 132.9, 133.1, 145.8, 151.7, 154.4, 162.8, $166.3(\mathrm{COPh})$ and $179.3(\mathrm{C}-4) ; ~ m / z$ (rel. intensity) $502\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 1\right], 500\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 3\right], 397$ (36), 395 (100), 367 (10) and $365(26) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1716,1641,1622$, 1390,1279 and 713.

Abstract

4-Benzoyloxymethyl-2-benzylidene-8-chloro-6,9-dimethoxynaphtho [1,2-b]furan-3(2H)-one 27d. Yellow crystals (Found: C, 68.07 ; $\mathrm{H}, 4.24 . \mathrm{C}_{29} \mathrm{H}_{21} \mathrm{ClO}_{6} \cdot \frac{\cdot}{2} \mathrm{H}_{2} \mathrm{O}$ requires C , $68.31 ; \mathrm{H}$, $4.35 \%), \mathrm{mp} 232-233{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}\left(33 \%\right.$ EtOAc-hexane) $0.6 ; \delta_{\mathrm{H}} 3.98$ $(3 \mathrm{H}, \mathrm{s}), 4.06(3 \mathrm{H}, \mathrm{s}), 5.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{O}\right), 6.98\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{7}\right.$ or $=\mathrm{CHPh}), 6.99\left(1 \mathrm{H}, \mathrm{s},=\mathrm{CHPh}\right.$ or $\left.\mathrm{H}^{7}\right), 7.4-7.6(6 \mathrm{H}, \mathrm{m}), 8.03(1 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{H}^{5}\right)$ and $8.11(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 56.2,62.4,62.6\left(\mathrm{CH}_{2} \mathrm{OBz}\right), 110.6$, 114.0, 116.9, 117.0, 117.0, 125.9, 128.4, 129.0, 129.6, 129.8, $130.1,130.3,130.9,131.7,132.2,133.0,145.2,146.8,152.3$, 164.4 (C-2), 166.2 (COPh) and 183.8 (C-3); m / z (rel. intensity) $502\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 7\right], 500\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 17\right], 397$ (36), 395 (100), 367 (8), 365 (21) and 105 (29); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1718,1693,1647$, 1618, 1581, 1522, 1277 and 714.

\section*{(S)-5-Benzoyloxymethyl-9-chloro-2-(1-methylpropyl)naphtho-[1,2-b]pyran-4,7,10-trione (S)-30}

The naphthol (S)-26b ($84 \mathrm{mg}, 0.17 \mathrm{mmol}$) was dissolved in acetonitrile (15 mL) and then aq. cerium(IV) ammonium nitrate (CAN) $(0.25 \mathrm{~g}, 0.46 \mathrm{mmol}$ in 1.4 mL$)$ was added. During the addition, the starting yellow colour turned dark brown and then reddish orange. After 30 min , the mixture was poured into a 100 ml separating funnel and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and water (20 $\mathrm{ml})$ were added. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{ml})$. The combined organic phase was washed with brine (50 ml), dried over MgSO_{4}, filtered through a short silica-gel column which was washed with diethyl ether (50 ml) and concentrated in the dark by a rotary evaporator. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ diethyl ether-hexane gave $58 \mathrm{mg}(75 \%)$ of the title compound $(S)-\mathbf{3 0}$ as orange crystals (Found: C, 66.48; H, 4.30. $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{ClO}_{6}$ requires C, $66.60 ; \mathrm{H}, 4.25 \%$), $\mathrm{mp} 196-198^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}^{31}-7.84$ (c 1.0 , $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}\left(30 \%\right.$ EtOAc-hexane) $0.6 ; \delta_{\mathrm{H}} 0.98\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{H}^{3^{\prime}}\right)$, $1.43\left(3 \mathrm{H}, \mathrm{d}, J 6.7,1^{\prime}-\mathrm{Me}\right), 1.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2}\right), 1.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2}\right)$, $2.74\left(1 \mathrm{H}, \mathrm{m}^{2} \mathrm{H}^{1^{\prime}}\right), 6.16\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 6.31\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{3}\right), 7.26$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{8}\right), 7.53(2 \mathrm{H}, \mathrm{m}), 7.64(1 \mathrm{H}, \mathrm{m}), 8.19(2 \mathrm{H}, \mathrm{m})$ and 8.25 $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right) ; \delta_{\mathrm{C}} 11.7\left(\mathrm{C}-3^{\prime}\right), 17.9\left(1^{\prime}-\mathrm{Me}\right), 27.3\left(\mathrm{C}-2^{\prime}\right), 40.5\left(\mathrm{C}-1^{\prime}\right)$, $65.3\left(\mathrm{CH}_{2} \mathrm{OBz}\right)$, 111.1 (C-3), 118.9 (C-6), 125.1 (C-4a or -10 a), 128.6, 129.6, 133.4, 134.0, 134.6, 147.9, 155.8, 166.0 (CO), 173.6 (C-2), 174.9 (C-4), 178.7 (C-10), 181.5 (C-7), and one carbon (C-4a or -10a) could not be found; $m / z 450\left(\mathrm{M}^{+}, 2\right), 345(100)$, 249 (12) and 105 (68); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1716,1680,651,1267$, 883 and 711.
$(R)-\mathbf{3 0}: 77 \%$ yield; $[a]_{\mathrm{D}}^{28}+7.22\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

(S)-5-Benzoyloxymethyl-11-methoxy-2-(1-methylpropyl)-8,11-dihydro-8,11-ethanoanthra[1,2-b]pyran-4,7,12-trione (\boldsymbol{S})-31

The quinone $\mathbf{3 0}(45 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 1-methoxycyclohexa-1,3-diene ($0.018 \mathrm{ml}, 0.15 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ were stirred at room temperature for 24 h . The reaction mixture was concentrated to give a dark brown oil, which was dissolved in pyridine $(0.2 \mathrm{ml})$. After $24 \mathrm{~h}, 5 \%$ aq. $\mathrm{HCl}(10 \mathrm{ml})$ was added and the mixture was extracted with $\mathrm{CHCl}_{3}(20 \mathrm{ml} \times 3)$. The combined extract was washed successively with 5% aq. $\mathrm{HCl}(20 \mathrm{ml} \times 3)$, saturated aq. $\mathrm{NaHCO}_{3}(30 \mathrm{ml})$, and brine (30 ml), dried over MgSO_{4}, filtered and concentrated. The residue was purified by silica gel chromatography followed by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether-hexane to give $36 \mathrm{mg}(69 \%)$ of a diastereomeric mixture of (S)-31 as yellow crystals, mp $150{ }^{\circ} \mathrm{C}$ (decomp.); $[a]_{\mathrm{D}}^{23}-20.3$ (c 0.93, CHCl_{3}); $R_{\mathrm{f}} 0.45$ ($30 \% \mathrm{EtOAc}-$ hexane); $\delta_{\mathrm{H}} 0.97\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}^{3^{\prime}}\right), 1.40\left(3 \mathrm{H}, \mathrm{d}, J 7.0,1^{\prime}-\mathrm{Me}\right), 1.75$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2}\right), 1.83\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2}\right), 1.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.00$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.72\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\mathrm{l}^{\prime}}\right), 3.67(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.41$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{8}\right), 6.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 6.25\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{3}\right), 6.41(1 \mathrm{H}$,
$\mathrm{m}, \mathrm{H}^{9}$ or $\left.\mathrm{H}^{10}\right), 6.60\left(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{H}^{10}\right.$ or $\left.\mathrm{H}^{9}\right), 7.51(2 \mathrm{H}, \mathrm{m})$, $7.62(1 \mathrm{H}, \mathrm{m})$ and $8.19\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}^{6}\right.$ and ArH$)$; δ_{C} (most signals of the diastereomers appeared as pairs in identical positions; numerals in brackets are signals due to the other isomer) 11.6 [11.7] (C-3'), 17.8 ($\left.1^{\prime}-\mathrm{Me}\right), 25.4$ (C-2'), 27.3 [27.3], 31.4, 33.5, 40.4 [40.4], $55.6(\mathrm{OMe}), 65.3\left(\mathrm{CH}_{2} \mathrm{OBz}\right), 85.6(\mathrm{C}-11), 110.7$, 118.4, 120.1, 125.0, 128.5, 129.8, 131.5, 133.3, 134.5, 135.2, $135.2,144.9,148.5,151.0,155.2,166.0$ (CO), 173.4 [173.5] (C-2), 179.0 (C-10), 179.5 (C-4), 179.5 (C-7) and 180.1 (C-12); $m / z 524\left(\mathrm{M}^{+}, 0.07\right), 496(2.3), 391$ (100), 362 (4) and 105 (12); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2869,1724,1664,1652,1587,1560$ and 1465.
(R)-31: 54% yield; $[a]_{\mathrm{D}}^{25}+22.2\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

(S)-5-Benzoyloxymethyl-11-methoxy-2-(1-methylpropyl)-anthra[1,2-b]pyran-4,7,12-trione (S)-32

The Diels-Alder adduct $(S)-\mathbf{3 1}(10 \mathrm{mg}, 0.019 \mathrm{mmol})$ was heated to $150^{\circ} \mathrm{C}$ on a melting-point apparatus. After 30 min , the residue was recrystallized from MeOH to give $7 \mathrm{mg}(74 \%)$ of $(S)-\mathbf{3 2}$ as yellow crystals (Found: M^{+}, 496.1516. $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{7}$ requires M, 496.1522), mp 277-279 ${ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{20}-25.3\left(c 0.50, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}(30 \%$ EtOAc-hexane) $0.1 ; \delta_{\mathrm{H}}$ (espicufolin numbering) $1.00(3 \mathrm{H}, \mathrm{d}$, $\left.J 7.6, \mathrm{H}^{16}\right), 1.44\left(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{H}^{17}\right), 1.79\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{15}\right), 1.98(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}^{15}\right), 2.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{14}\right), 4.06(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.17\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}^{13}\right)$, $6.33\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{3}\right), 7.37\left(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{H}^{10}\right), 7.53(2 \mathrm{H}, \mathrm{m}), 7.62(1 \mathrm{H}$, m), $7.67\left(1 \mathrm{H}, \mathrm{dd}, J 7.0\right.$ and $\left.7.6, \mathrm{H}^{8}\right), 7.78\left(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{H}^{9}\right), 8.22$ $(2 \mathrm{H}, \mathrm{m})$ and $8.47\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right) ; \delta_{\mathrm{C}} 11.6(\mathrm{C}-16), 17.9(\mathrm{C}-17), 27.3$ (C-15), 40.2 (C-14), 56.2 (OMe), 65.4 (C-13), 110.6 (C-3), 118.3 (C-11a), 118.6 (C-8), 118.7 (C-6), 119.3 (C-12a), 123.3 (C-4a), 123.6 (C-10), 125.3, 129.8, 129.9, 131.5, 133.3 (C-7a), 134.5 (C-6a), 144.6 (C-9), 155.3 (C-5), 155.7 (C-12b), 159.7 (C-11), $166.1(\mathrm{COPh}), 173.8(\mathrm{C}-2), 179.0(\mathrm{C}-4), 180.3(\mathrm{C}-7)$ and 182.8 (C-12); m/z $496\left(\mathrm{M}^{+}, 1.5\right), 391$ (100), 359 (6) and 105 (13); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1716,1680,1645,1585,1558,1463,1444,1419$, 1392, 1369 and 1344.
(R)-32: 83% yield; $[a]_{\mathrm{D}}^{24}+27.0\left(c 0.30, \mathrm{CHCl}_{3}\right)$.

(S)-5-Benzoyloxymethyl-11-hydroxy-2-(1-methylpropyl)anthra-[1,2-b]pyran-4,7,12-trione (S)-33

To a solution of compound $(S)-\mathbf{3 2}(11 \mathrm{mg}, 0.022 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added dropwise 1.0 M BBr 3 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.05$ $\mathrm{ml}, 0.05 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After 30 min , the reaction mixture was quenched with saturated aq. $\mathrm{NaHCO}_{3}(10 \mathrm{ml})$ and then warmed to room temperature. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml} \times 2)$. The combined organic phases were washed successively with saturated aq. $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$ and brine $(20 \mathrm{ml})$, dried over MgSO_{4}, filtered and concentrated. The residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether-hexane to give $8 \mathrm{mg}(75 \%)$ of (S)-33 as yellow crystals (Found: M^{+}, 482.1357. $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{O}_{7}$ requires M, 482.1366), mp 227-229 ${ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{20}-19.7$ (c 0.30 , $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}(30 \% \mathrm{EtOAc}-$ hexane $) 0.5 ; \delta_{\mathrm{H}} 1.00(3 \mathrm{H}, \mathrm{d}, J 7.3$, $\left.\mathrm{H}^{16}\right), 1.45\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{H}^{17}\right), 1.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{15}\right), 1.99(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}^{15}\right), 2.76\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{14}\right), 6.19\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}^{13}\right), 6.33\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{3}\right), 7.37$ $\left(1 \mathrm{H}\right.$, dd, $J 8.2$ and $\left.1.2, \mathrm{H}^{10}\right), 7.52(2 \mathrm{H}, \mathrm{m}), 7.63(1 \mathrm{H}, \mathrm{m}), 7.70$ $\left(1 \mathrm{H}, \mathrm{dd}, J 8.2\right.$ and $\left.7.6, \mathrm{H}^{8}\right), 7.85\left(1 \mathrm{H}, \mathrm{d}, J 7.6\right.$ and $\left.1.2, \mathrm{H}^{9}\right), 8.22$ $(2 \mathrm{H}, \mathrm{m}), 8.47\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right)$ and $12.84(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}} 11.7(\mathrm{C}-16)$, 17.9 (C-17), 27.4 (C-15), 40.5 (C-14), 65.4 (C-13), 111.1 (C-3), 116.8 (C-11a), 119.4 (C-8), 119.5 (C-6), 120.8 (C-12a), 125.3 (C-4a), 125.4 (C-10), 128.6, 129.8, 129.9, 132.2, 133.4 (C-7a), 136.5 (C-6a), 136.6 (C-9), 147.0 (C-5), 156.4 (C-12b), 162.6 (C-11), $166.0(\mathrm{COPh}), 173.6(\mathrm{C}-2), 178.9$ (C-4), 181.6 (C-7), 187 (C-12); $m / z 482\left(\mathrm{M}^{+}, 1.2\right), 440(31), 362$ (100), 281 (33) and 122 (83); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3438,1718,1654,1637,1587,1461,1267$ and 1220.
(R)-33: 52% yield; $[a]_{D}^{23}+23.3\left(c 0.30, \mathrm{CHCl}_{3}\right)$.

(S)-Espicufolin (S)-1

The benzoate (S) - $\mathbf{3 3}$ ($13 \mathrm{mg}, 0.027 \mathrm{mmol}$) in dry THF (5 mL) was dissolved in $\mathrm{MeOH}(0.43 \mathrm{ml})$ and $1 \mathrm{M} \mathrm{NaOH}(0.11 \mathrm{ml})$ at
$0^{\circ} \mathrm{C}$. The mixture was stirred for 40 min at $0^{\circ} \mathrm{C}$. The reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{ml})$ and the mixture was concentrated by a rotary evaporator. The residual syrup was extracted with EtOAc and the extract was washed successively with saturated aq. $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$ and brine (20 ml), dried over MgSO_{4}, filtered, and concentrated by a rotary evaporator to give a crude product, which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether-hexane to give $7 \mathrm{mg}(69 \%)$ of (S)-1 as yellow crystals (Found: $\mathrm{M}^{+}, 378.1104 . \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{6}$ requires M, 378.1103), mp $185-187^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}^{23}-11.28\left(c 0.02, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}(30 \%$ EtOAc-hexane) $0.25 ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}-d_{6}\right) 0.93\left(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{H}^{16}\right)$, $1.38\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{H}^{17}\right), 1.75\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{15}\right), 1.92\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{15}\right)$, $2.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{14}\right), 5.16\left(2 \mathrm{H}, \mathrm{d}, J 4.8, \mathrm{H}^{13}\right), 5.56(1 \mathrm{H}, \mathrm{t}, J 4.8$, $13-\mathrm{OH}), 6.34\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{3}\right), 7.38\left(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{H}^{10}\right), 7.68(1 \mathrm{H}, \mathrm{d}$, $\left.J 7.3, \mathrm{H}^{8}\right), 7.77\left(1 \mathrm{H}, \mathrm{dd}, J 8.3\right.$ and $\left.7.3, \mathrm{H}^{9}\right), 8.51\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{6}\right)$ and $12.65(1 \mathrm{H}, \mathrm{s},-11-\mathrm{OH}) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}-d_{6}\right) 11.17(\mathrm{C}-16), 17.30$ (C-17), 26.56 (C-15), 39.19 (C-14), 62.07 (C-13), 110.3 (C-3), 116.6 (C-11a), 118.5 (C-8), 118.7 (C-6), 119.6 (C-12a), 123.9 (C-4a), 124.4 (C-10), 132.0 (C-7a), 135.9 (C-6a), 136.4 (C-9), 153.1 (C-5), 155.5 (C-12b), 161.2 (C-11), 172.4 (C-2), 178.1 (C-4), $181.4(\mathrm{C}-7)$, and $186.8(\mathrm{C}-12) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3473$, 1676, 1647, 1583, 1460, 1272 and 1220; m/z $378\left(\mathrm{M}^{+}, 11\right), 267$ (21), 320 (9), 349 (18) and 378 (100).
(R)-1: 63% yield, $\mathrm{mp} 186-187^{\circ} \mathrm{C}$ (lit., ${ }^{3} 184-186^{\circ} \mathrm{C}$); $[a]_{\mathrm{D}}^{25}$ $+8.50\left(c 0.02, \mathrm{CHCl}_{3}\right)$ \{natural espicufolin: $[a]_{\mathrm{D}}^{23}+9.44$ (c 0.02 , $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$.
(\pm)-1, mp 189-192 ${ }^{\circ} \mathrm{C}$.

Acknowledgements

We thank Professor Haruo Seto for the gift of natural (R)espicufolin. This work was partly supported by a Grant-in-Aid for Scientific Research (No. 12640521) from the Ministry of Education, Science, Sports and Culture.

References

1 N. Kotoda, K. Shin-ya, K. Furihata, Y. Hayakawa and H. Seto, J. Antibiot., 1997, 50, 770 and references cited therein.

2 D. W. Choi, J. Neurosci., 1990, 10, 2493; A. J. Grau, E. Berger, K.-L. Paul Sung and G. W. Schmid-Schönbein, Stroke, 1992, 23, 33; K. Baker, C. B. Marcus, K. Huffman, H. Kruk, B. Malfroy and S. R. Doctrow, J. Pharmacol. Exp. Ther., 1998, 284, 215.

3 J.-S. Kim, K. Shin-ya, J. Eishima, K. Furihata and H. Seto, J. Antibiot., 1996, 49, 947.

4 R. H. Thomson, Naturally Occurring Quinones III, Chapman and Hall, London, 1987; R. H. Thomson, Naturally Occurring

Quinones: Recent Advances, Blackie Academic \& Professional, London, 4th edn., 1997.
5 H. Inouye and E. Leistner, The Chemistry of Quinonoid Compounds, ed. S. Patai and Z. Rappoport, John Wiley and Sons, London, 1988, vol. 2, ch. 22
6 F. Lombó, E. Künzel, L. Prado, A. F. Braña, K. U. Bindseil, J. Frevert, D. Bearden, C. Méndez, J. A. Salas and J. Rohr, Angew. Chem., Int. Ed., 2000, 39, 796.
7 K. Sakamoto, E. Honda, N. Ono and H. Uno, Tetrahedron Lett., 2000, 41, 1819.
8 H. Uno, K. Sakamoto, E. Honda and N. Ono, Chem. Commun., 1999, 1005.
9 Y. Naruta and K. Maruyama, The Chemistry of Quinonoid Compounds, ed. S. Patai and Z. Rappoport, John Wiley and Sons, London, 1988, vol. 2, ch. 8.
10 K. Nakatani, A. Okamoto, T. Matsuno and I. Saito, J. Am. Chem. Soc., 1998, 120, 11219.
11 J. L. Bloomer, K. W. Stagliano and J. A. Gazzillo, J. Org. Chem., 1993, 58, 7906.
12 R. E. Gawley and K. Rein, Comprehensive Organic Chemistry, series ed. B. M. Trost and I. Fleming, volume ed. S. L. Schreiber, Pergamon Press, Oxford, vol. 1 ch. 2.1.
13 R. H. Mitchell, Y.-H. Lai and R. V. Williams, J. Org. Chem., 1979, 44, 4733.
14 J. Alexander, A. V. Bhatia, L. A. Mitscher, S. Omoto and T. Suzuki, J. Org. Chem., 1980, 45, 20.

15 J. Auerbach, S. A. Weissman, T. J. Blacklock, M. R. Angeles and K. Hoogsteen, Tetrahedron Lett., 1993, 34, 931.

16 C. A. Giza and R. L. Hinman, J. Org. Chem., 1964, 29, 1453.
17 E. J. Corey and P. L. Fuchs, Tetrahedron Lett., 1972, 3769.
18 J. Diago-Mesequer, A. L. Palomo-Coll, J. R. Fernández-Lizarbe and A. Zugaza-Bilbao, Synthesis, 1980, 547.
19 A. T. Bottini, F. P. Corson and E. F. Böttner, J. Org. Chem., 1965, 30, 2988.

20 S. Torii, H. Okumoto, L. H. Hu, M. Sadakane, M. V. Shostakovsky, A. B. Ponomaryov and V. N. Kalinin, Tetrahedron, 1993, 49, 6773.

21 J. E. Baldwin, R. C. Thomas, L. I. Kruse and L. Silberman, J. Org. Chem., 1977, 42, 3846; J. E. Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734; S. A. Kandil and R. E. Dessy, J. Am. Chem. Soc., 1966, 88, 3027.
22 K. Mukai, K. Okabe and H. Hosose, J. Org. Chem., 1989, 54, 557.

23 K. Nakatani, A. Okamoto, M. Yamanuki and I. Saito, J. Org. Chem., 1994, 59, 4360; H. Garcia, S. Iborra, J. Primo and M. A. Miranda, J. Org. Chem., 1986, 51, 4432.
24 J. Tanaka, K. Toku, B. Zhang, K. Ishihara, M. Sakanaka and N. Maeda, Glia, 1999, 28, 85.

25 K. Toku, J. Tanaka, H. Yano, J. Desaki, B. Zhang, L. Yang, K. Ishihara, M. Sakanaka and N. Maeda, J. Neurosci. Res., 1998, 53, 415.
26 M. Uyeda, K. Yokomizo, A. Ito, K. Nakayama, H. Watanabe and Y. Kida, J. Antibiot., 1997, 50, 828.

[^0]: \dagger Experimental details for 13, 15, 17a, 18c, 18d, 18e, 21c, 21d, 21e, 25c, 25d, 25e, 26c, 26e, 27e, 28 and 29 are available as supplementary data. For direct electronic access see http://www.rsc.org/suppdata/p1/b0/ b007859j/

